
Method for Performing

Classical Bayesian Net Calculations

Using a Quantum Computer

Robert R. Tucci

P.O. Box 226

Bedford, MA 01730

tucci@ar-tiste.com

May 22, 2004

1

CROSS REFERENCES TO RELATED APPLICA-

TIONS

Not Applicable

STATEMENT REGARDING FEDERALLY SPON-

SORED RESEARCH AND DEVELOPMENT

Not Applicable

BACKGROUND OF THE INVENTION

(A)FIELD OF THE INVENTION

The invention relates to an array of quantum bits (qubits) commonly known as a

quantum computer. More specifically, it relates to methods for translating an input

data-set into a sequence of operations that can be used to manipulate said array. The

invention also relates to classical probabilistic networks (classical Bayesian nets) and

their quantum counterparts.

(B)DESCRIPTION OF RELATED ART

This invention deals with Quantum Computing. A quantum computer is an array of

quantum bits (qubits) together with some hardware for manipulating these qubits.

Quantum computers with several hundred qubits have not been built yet. However,

once they are built, it is expected that they will perform certain calculations much

faster that classical computers. A quantum computer follows a sequence of elemen-

tary operations. The operations are elementary in the sense that they act on only

a few qubits (usually 1, 2 or 3) at a time. Henceforth, we will sometimes refer to

2

sequences as products and to operations as operators, instructions, steps or gates.

Furthermore, we will abbreviate the phrase “sequence of elementary operations” by

“SEO”. SEOs are often represented as qubit circuits. In the quantum computing

literature, the term “quantum algorithm” usually means a SEO for quantum com-

puters for performing a desired calculation. Some quantum algorithms have become

standard, such as those due to Deutsch-Jozsa, Shor and Grover. For a detailed discus-

sion of quantum computing, see the books Gru99: J. Gruska, Quantum Computing,

(Osborne McGraw-Hill, 1999), and NieChu00: M. Nielsen, I. Chuang, Quantum

Computation and Quantum Information, (Cambridge University Press, 2000). Also,

one can find on the Internet some excellent, free introductions to quantum computing.

This invention also deals with Classical Bayesian (CB) and Quantum Bayesian

(QB) nets. (Most of the literature to date deals only with CB nets and refers to them

simply as Bayesian nets (or networks), without the adjective “classical”.)

A CB net comprises a graph (i.e., a diagram) and a matrix (with probabilities

as entries) associated with each node of the graph. CB nets organize large amounts of

probabilistic information and represent complicated probabilistic relationships. They

do this in a way that is graphical, highly intuitive, and easily scalable. From the

data contained within a CB net, one can derive many other conditional probabilities.

Knowing such conditional probabilities is useful in applications of Decision Theory

and Artificial Intelligence, wherein inferences are made based on uncertain knowledge.

CB nets have been used in many areas, including pattern recognition, speech recog-

nition, data mining, search engines, spam filters, expert systems, medical diagnosis,

computer games with AI capabilities, etc. Companies which actively support the

development and deployment of CB net technology include Microsoft, Intel, Google,

etc. CB nets are also used in Defense (e.g., Star Wars missile discrimination). For

a detailed discussion of CB nets, see the books Jen01: Finn V. Jensen, Bayesian

Networks and Decision Graphs (Springer Verlag, 2001), and Pea88: Judea Pearl,

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Mor-

3

gan Kaufmann, Palo Alto, 1988). Also, one can find on the Internet some excellent,

free introductions to CB nets.

QB nets are a generalization of CB nets to quantum mechanics. A QB net

comprises a graph and a matrix (with complex numbers called probability amplitudes

or just amplitudes as entries) associated with each node of the graph. QB nets have

been proposed as a graphical method for analyzing the behavior of quantum systems,

in QFogPat: US Patent 5,787,236 by R.R. Tucci. QB net diagrams may be viewed

as an alternative to qubit circuits. For an introduction to QB nets, see QFogPat

and Tuc99QIT: R.R. Tucci, “Quantum Information Theory - A Quantum Bayesian

Nets Perspective”, ArXiv eprint quant-ph/9909039 .

The method proposed in this invention is based on an earlier method proposed

by Fredkin-Toffoli (F-T) in Tof80: T. Toffoli, Automata, Languages and Program-

ming, 7th Coll. (Springer Verlag, 1980) pg. 632, and in FreTof82: E. Fredkin, T.

Toffoli, Int. Jour. of Th. Phys. (1982) Vol. 21, pg. 219. The F-T method is used

in the field of (classical) reversible computing. F-T showed how, given any binary

gate f (i.e., a function f : {0, 1}r → {0, 1}s, for some integers r, s), one can construct

another binary gate f such that f can be used to perform the same calculations as f ,

but in a reversible manner. We will call f a deterministic reversible extension (DRE)

of f . Binary gates f and f can be represented as binary deterministic circuits. In this

patent, we show how, given any CB net KC , one can construct a QB net KQ which is

a “q-embedding” of KC . (“q-” stands for “quantum-”) By running KQ on a quantum

computer, one can calculate any conditional probability that one would be interested

in calculating for the CB net KC . Such conditional probabilities can be calculated

with classical computers; the hope is that they can be calculated much faster with a

quantum computer. Our method for constructing a q-embedding for a CB net is a

generalization of the F-T method for constructing a DRE of a binary deterministic

circuit. Thus, we generalize their method to the embedding of any classical stochastic

circuit, not just binary deterministic ones.

4

Grover’s algorithm is a quantum algorithm proposed in GroPat: US Patent

6,317,766, by Lov K. Grover. Our method of embedding a CB net KC within a

QB net KQ can sometimes be used in combination with Grover’s algorithm to great

advantage. In certain cases, the target states that we wish to detect have probabilities

that are too small to be measurable by running KQ on a quantum computer. However,

we will show that sometimes one can construct a new QB net, call it KQ′, that

magnifies to measurable values the target probabilities that were unmeasurable using

KQ alone. We will refer to KQ′ as Grover’s Microscope for KQ, because KQ′ is closely

related to Grover’s algorithm, and it magnifies some of the probabilities found with

KQ.

The independent claims of GroPat are 1 and 12. Claim 1 of GroPat refers

to an “arrangement”, presumably meaning quantum hardware such as a quantum

computer. The claims of the present patent that pertain to Grover’s algorithm require

a classical computer that generates a sequence of operations; they do not require the

actual application of said sequence of operations to a quantum computer. Claim 12 of

GroPat refers to “A method for moving a quantum mechanical physical system which

exists in a superposition of a plurality of states”. Again, this seems to require quantum

hardware to be manipulated according to the method. Even if it were judged that an

embodiment of Claim 12 of GroPat did not require quantum hardware, the present

patent claims a Grover-like algorithm only if used as a post-processor to a special,

classical computer program of which a preferred embodiment called “Q-Embedder”

is described below.

A quantum compiler is a computer program that one runs on classical comput-

ers. It can “compile” a unitary matrix; i.e., it can express a unitary matrix as a SEO

that a quantum computer can follow. An early type of quantum compiler is discussed

in Bar95: A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P.

Shor, T. Sleator, J.H. Smolin, H. Weinfurter, ArXiv eprint quant-ph/9503016. A

different type of quantum compiler is discussed in QbtrPat: US Patent 6,456,994

5

B1, by R. R. Tucci, and in Tuc99Qbtr: R.R. Tucci, “A Rudimentary Quantum

Compiler(2cnd ed.)”, ArXiv eprint quant-ph/9902062.

To run a QB net on a quantum computer, as is proposed in this invention,

we need to translate the QB net into an equivalent SEO. This can be done with the

help of a quantum compiler. A possible method of accomplishing this is discussed in

QbtrPat and in Tuc98: R.R. Tucci, “How to Compile a Quantum Bayesian Net”,

ArXiv eprint quant-ph/9805016 . Thus, the method of this invention promises to be

fertile ground for the use of quantum compilers.

A precursor to this invention was first published in TucV1: R.R. Tucci,

“Quantum Computer as an Inference Engine”, ArXiv eprint quant-ph/0004028 Ver-

sion 1, submitted on 6 Apr 2000. After TucV1 was published, Tucci realized that

the method of TucV1 was flawed in some important respects. A new method, which

is a substantial modification and correction of the method of TucV1, was published

by Tucci in TucV2: R.R. Tucci, “Quantum Computer as a Probabilistic Inference

Engine”, ArXiv eprint quant-ph/0004028 Version 2, submitted on 19 Apr 2004. We

emphasize that TucV1 is now considered obsolete and flawed by Tucci. On the other

hand, Tucci currently views TucV2 as essentially correct and in agreement with

this invention. TucV1 and TucV2 differ as follows. Contrary to TucV2, TucV1

does not q-embed the root nodes of the CB net that it is trying to q-embed. More

importantly, Section 6.3 of TucV1 incorrectly claims that calculating a conditional

probability for a CB net KC using its q-embedding KQ requires measurements of all

internal nodes of KQ. TucV2 shows that only some of the external nodes of KQ

need to be measured.

JaePat: US Patent 6,675,154, by G.S. Jaeger, proposes the use of a quantum

computer for performing Fuzzy Logic. (Fuzzy Logic is a field that started with the

paper Zad65: Lotfi Zadeh, “Fuzzy Sets”, Information and Control Vol 8 (1965) pgs.

338-353). Although it might at first appear that there is some overlap between the

claims of JaePat and those of the present patent, careful reflection shows that this is

6

not the case. Indeed, the independent claims of JaePat are 1,2, 6 and 11. Claim 1 of

JaePat requires the use of F1:“at least one fuzzy proposition”. Claim 2 of JaePat

requires the use of F2:“fuzzy logic operations”. Claims 6 and 11 both require “fuzzy

control”, which presumably requires F1 or F2. The claims of the present patent do

not require F1 or F2. It is also of interest to note that many scientists and engineers

are highly critical of Fuzzy Logic, and consider Bayesian Nets a far better method for

dealing with situations involving uncertain knowledge.

To summarize, the present invention has the following advantages over prior

art:

• It merges ideas from various subjects (quantum computers, CB nets, QB nets,

quantum compilers and Grover’s algorithm) in a new way.

• It generalizes ideas of F-T used in classical reversible computing.

• It gives a method for performing CB net calculations on a quantum computer.

Such calculations can be done on a classical computer. The hope is that they

can be done much faster on a quantum computer.

• It uses ideas from TucV2, and avoids mistakes of TucV1. TucV1 and TucV2

were both written by the inventor of this patent.

• It shuns ideas from Fuzzy Logic in favor of Bayesian nets.

BRIEF SUMMARY OF THE INVENTION

A quantum computer is an array of quantum bits (qubits) together with some hard-

ware for manipulating these qubits. A classical Bayesian (CB) net (or network) com-

prises a graph (i.e., a diagram) and a matrix (with probabilities as entries) associated

with each node of the graph. A quantum Bayesian (QB) net comprises a graph and

a matrix (with complex numbers called probability amplitudes or just amplitudes as

entries) associated with each node of the graph.

7

A preferred embodiment of the invention comprises a classical computer that

runs a special computer program. The program takes as input an initial data-set that

contains probabilistic information and returns as output a sequence of elementary

operations (SEO). The initial data-set helps determine a CB net KC . A program

called “Q-Embedder” q-embeds KC within a QB net KQ. (“q-” stands for “quantum-

). A program called “Qubiter” then translates KQ into an equivalent SEO. Qubiter

is an example of a type of program called a quantum compiler.

The SEO outputted by the classical computer can be used to manipulate an

array of qubits in a quantum computer. Application of the SEO to the array, followed

by a measurement of the array, yields the value of certain conditional probabilities

that we wish to know.

A probability matrix is any matrix such that each column of the matrix con-

stitutes a discrete probability distribution. Given a probability matrix P , this patent

defines a unitary matrix U called a q-embedding of P . U carries all information

contained in P . This patent describes a method for constructing one q-embedding U

(out of many possible ones) for an arbitrary probability matrix P .

Given a CB net KC , this patent defines a QB net KQ called a q-embedding

of KC . By running KQ on a quantum computer, one can calculate any conditional

probability that one would be interested in calculating for the original CB net KC .

This patent describes a method for constructing one q-embedding KQ (out of many

possible ones) for an arbitrary CB net KC . The method involves replacing each node

matrix of KC by a q-embedding. Doing this replacement of node matrices requires

adding to the graph of KC new nodes called marginalizer and ancilla nodes.

This patent also shows how to use a version of Grover’s algorithm in combi-

nation with Q-Embedder and Qubiter.

8

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a labelled graph and the four node matrices associated with the four

nodes of the graph. The Aj are complex amplitudes. This figure illustrates a

QB net. Suppose we replaced Aj everywhere in this figure by probabilities Pj.

Then the figure would be an illustration of a CB net.

FIG. 2 shows how to construct a q-embedding of an arbitrary probability matrix

P (y|x). For definiteness, we assume in this figure that x ∈ {0, 1, 2} and y ∈
{0, 1, 2, 3}. Shaded columns can be filled using the Gram-Schmidt algorithm.

FIG. 3 shows a CB net for 2-body scattering. The figure includes the net’s graph

and a table of its node probabilities. We use this net to illustrate how one can

construct a q-embedding of an arbitrary CB net.

FIG. 4 shows a CB net (defined by a graph and a table of node probabilities) obtained

by adding marginalizer nodes to the CB net of FIG.3.

FIG. 5 shows, for the scattering QB net, its graph.

FIG. 6 shows, for the scattering QB net, a table of its node amplitudes.

FIG. 7 shows, for the scattering QB net, the probability amplitude of its external

nodes.

FIG. 8 shows, for the lung-disease-diagnosis CB net, its graph, and a table of its

node probabilities.

FIG. 9 shows, for the lung-disease-diagnosis QB net, its graph.

FIG. 10 shows, for the lung-disease-diagnosis QB net, a table of its node amplitudes.

FIG. 11 shows, for the voting CB net, its graph and a table of its node probabilities.

9

FIG. 12 shows, for the voting QB net, its graph, a table of its node amplitudes and

the amplitude of its external nodes.

FIG. 13 shows various vectors relevant to the algorithm that we call “Grover’s Mi-

croscope”.

FIG. 14 shows two boxes, each representing a text file. Together, these two text files

fully specify a QB net.

FIG. 15 shows a block diagram of a classical computer feeding data to a quantum

computer.

DETAILED DESCRIPTION OF THE INVENTION

(A)Theory Behind New Method

Henceforth, we use the following notation.

We will use the word “ditto” as follows. If we say “A (ditto, X) is smaller

than B (ditto, Y)”, we mean “A is smaller than B” and “X is smaller than Y”.

The prefix “q-” will to stand for “quantum-” (as in “q-embedding”) and the

prefix “c-” will stand for “classical-”.

Let Bool = {0, 1}. Let Za,b = {a, a+1, a+2, . . . , b−1, b} for arbitrary integers

a and b such that a ≤ b. For any finite set S, |S| will denote the cardinality of S (i.e.,

the number of elements in S).

δ(x, y) will denote the Kronecker delta function; it equals one if x = y and

zero otherwise. For any statement St, we define the truth function θ(St) to equal 1

if St is true and 0 if St is false. For example, δ(x, y) = θ(x = y).

⊕ will denote addition mod 2. Suppose ~x = (x0, x1, x2, . . .) ∈ Bool∞. We will

call x =
∑∞

α=0 xα2α the decimal representation of ~x and denote it by dec(~x).

We will use the symbol
∑

. to denote a sum of whatever is on the right hand

side of this symbol, where we sum over those indices with a dot underneath them.

10

For example,
∑
· f(a.) =

∑
a f(a)

Suppose function f maps set S into the complex numbers. We will use

f(x)/(
∑

x numerator) to represent f(x)/(
∑

x∈S f(x)). Thus, “numerator” stands

for the numerator of the fraction.

Henceforth, we will either underline or put a caret over random variables.

(ArXiv publications by Tucci (e.g., TucV2) indicate random variables by underlining

them.) For example, P (â = a) = Pâ(a) will denote the probability that the random

variable â assumes value a. P (â = a) will often be abbreviated by P (a) when no

confusion will arise. Sâ will denote the set of values which the random variable â may

assume, and Nâ will denote the number of elements in Sâ. pd(B|A) will stand for the

set of probability distributions P (·|·) such that P (b|a) ≥ 0 and
∑

b′∈B P (b′|a) = 1 for

all a ∈ A and b ∈ B.

H1 =




1 1

1 −1


 is the one bit Hadamard matrix. HNB

= H⊗NB
1 (the n-fold

tensor product of H1) is the NB bit Hadamard matrix.

Let ~κ = (κ0, κ1, . . . , κNB−1) label NB bits. Assume all κi are distinct. We

will often use NS = 2NB , where NB stands for number of bits and NS for number of

states. If |φ〉κi
= |φ(κi)〉 is a ket for qubit κi, define |φ〉~κ = |φ(~κ)〉 =

∏NB−1
i=0 |φ(κi)〉.

For example, if

|0〉κi
=




1

0


 (1)

for all i, then

|0〉~κ =
NB−1∏

i=0

|0〉κi

=




1

0


⊗




1

0


⊗ · · · ⊗




1

0




= [1, 0, 0, . . . , 0]T . (2)

11

Likewise, if Ω(κi) is an operator acting on qubit κi, define Ω(~κ) =
∏NB−1

i=0 Ω(κi). For

example, H1(~κ) =
∏NB−1

i=0 H1(κi) is the NB bit Hadamard matrix.

Suppose φ is a normalized (φ†φ = 1) complex vector. Define the projection

and reflection operators for φ by

Πφ = φφ† , Rφ = 1− 2Πφ . (3)

Note that Π2
φ = Πφ. If x′ = Rφx, then x′ is the reflection of x with respect to the

plane perpendicular to φ. For example, Rφφ = −φ.

Next we will present a brief review of CB and QB nets. For more information

about CB nets see Jen01 or Pea88 or the internet. For more information about QB

nets, see QFogPat or Tuc99QIT. First, we will discuss QB nets. Then we will point

out how CB nets differ from QB nets.

We call a graph (or a diagram) a collection of nodes with arrows connecting

some pairs of these nodes. The arrows of the graph must satisfy certain constraints.

We call a labelled graph a graph whose nodes are labelled. A QB net consists of

two parts: a labelled graph with each node labelled by a random variable, and a

collection of node matrices, one matrix for each node. These two parts must satisfy

certain constraints.

An internal arrow is an arrow that has a starting (source) node and a different

ending (destination) one. We will use only internal arrows. We define two types of

nodes: an internal or non-leaf node is a node that has one or more internal arrows

leaving it, and an external or leaf node is a node that has no internal arrows leaving

it. It is also common to use the terms root node or prior probability node for a node

that has no incoming arrows (if any arrows touch it, they are outgoing ones).

We restrict our attention to acyclic graphs; that is, graphs that do not contain

cycles. (A cycle is a closed path of arrows with the arrows all pointing in the same

sense.)

We assign a random variable to each node of the QB net. Suppose the random

12

variables assigned to the N nodes are x̂1, x̂2, · · · , x̂N . For each j ∈ Z1,N , the random

variable x̂j will be assumed to take on values within a finite set Sj called the set of

possible states of x̂j.

For example, consider the net of FIG.1. Nodes 11, 12 and 13 are internal and

node 14 is external. Node 11 is a root node. There are four nodes so N = 4. We

will assume that the four nodes must lie in one of two states: either no or si. Thus,

S1 = S2 = S3 = S4 = {no, si}.
If Γ = {k1, k2, · · · , k|Γ|} ⊂ Z1,N , and k1 < k2 < · · · < k|Γ|, define (x·)Γ =

(xk1 , xk2 , · · · , xk|Γ|) and (x̂·)Γ = (x̂k1 , x̂k2 , · · · , x̂k|Γ|). Sometimes, we also abbreviate

(x·)Z1,N
(i.e., the vector that includes all the possible xj components) by just x·, and

(x̂·)Z1,N
by just x̂· .

For example, suppose N = 4. One has Z1,4 = {1, 2, 3, 4}. If Γ = {1, 3},
then |Γ| = 2. Furthermore, (x·)Γ = (x1, x3) and (x̂·)Γ = (x̂1, x̂3). One defines

x· = (x·)Z1,4 = (x1, x2, x3, x4) and x̂· = (x̂·)Z1,4 = (x̂1, x̂2, x̂3, x̂4).

Let Zext be the set of all j ∈ Z1,N such that x̂j is an external node, and let

Zint be the set of all j ∈ Z1,N such that x̂j is an internal node. Clearly, Zext and Zint

are disjoint and their union is Z1,N .

For example, for FIG.1, Zext = {4} and Zint = {1, 2, 3}.
Each possible value x· of x̂· defines a different net story. For any net story x·,

we call (x·)Zint
the internal state of the story and (x·)Zext its external state.

For example, a possible story for the net of FIG.1 is the case when x̂1 = x̂2 = si

and x̂3 = x̂4 = no. This net story may also be represented by x̂· = (si, si, no, no).

Since we are assuming that each of the four nodes of FIG.1 can assume two states,

there are total of 24 = 16 stories possible for the net of FIG.1. For story x̂· =

(si, si, no, no), the internal state is (x1, x2, x3) = (si, si, no) and the external state is

x4 = no.

For each net story, we may assign an amplitude to each node. Define Γj to be

the set of all k such that an arrow labelled xk (i.e., an arrow whose source node is x̂k)

13

enters node x̂j. We say nodes (x̂·)Γj
are parents of node x̂j, and x̂j is a child of nodes

(x̂·)Γj
. We assign a complex number Aj[xj|(x·)Γj

] to node x̂j. We call Aj[xj|(x·)Γj
]

the amplitude of node x̂j within net story x·.
For example, consider an arbitrary net story, call it (x1, x2, x3, x4), of FIG.1.

No arrow enters node x̂1 so both Γ1 and (x·)Γ1 are empty. Node x̂2 is entered by

an arrow from node x̂1 so Γ2 = {1} and (x·)Γ2 = (x1). Likewise, Γ3 = {1} and

(x·)Γ3 = (x1). Finally, Γ4 = {2, 3} and (x·)Γ4 = (x2, x3). We assign the complex

number A1[x1] to node x̂1, A2[x2|x1] to node x̂2, A3[x3|x1] to node x̂3, and A4[x4|x2, x3]

to node x̂4.

The amplitude of net story x·, call it A(x·), is defined to be the product of all

the node amplitudes Aj[xj|(x·)Γj
] for j ∈ Z1,N . Thus,

A(x·) =
∏

j∈Z1,N

Aj[xj|(x·)Γj
] . (4)

For example, consider an arbitrary net story, call it (x1, x2, x3, x4), of FIG.1.

One has that

A(x1, x2, x3, x4) = A1[x1]A2[x2|x1]A3[x3|x1]A4[x4|x2, x3] . (5)

The function Aj with values Aj[xj|(x·)Γj
] determines a matrix that we will

call the node matrix of node x̂j, and denote by Qj. xj is the matrix’s row index and

(x·)Γj
is its column index.

For example, FIG.1 gives the four node matrices Q1, Q2, Q3, Q4 associated

with the four nodes of the graph shown there.

This concludes our brief review of QB nets. CB nets are the same a QB

nets except that complex numbers (node amplitudes) Aj[xj|(x.)Γj
], are replaced by

non-negative numbers (node probabilities) Pj[xj|(x.)Γj
]. In analogy to Eq.(4), the

probability of net story x·, call it P (x·), is defined as

14

P (x·) =
∏

j∈Z1,N

Pj[xj|(x·)Γj
] . (6)

Whereas the node amplitudes of a QB net satisfy (usually)

∑

xj∈Sj

∣∣∣Aj[xj|(x.)Γj
]
∣∣∣
2

= 1 , (7)

the node probabilities of a CB net satisfy (usually)

∑

xj∈Sj

Pj[xj|(x.)Γj
] = 1 . (8)

(We say “usually” because sometimes it might be convenient to use un-normalized

Pj or Aj. Within the specification of this patent, we assume that node probabilities

Pj and node amplitudes Aj are normalized. This should be interpreted as a preferred

embodiment, not a necessity, of the invention.)

Refs.QbtrPat (see, for example, Eq.(20) of QbtrPat) and Tuc98 show that

given any QB net, one can find a (non-unique) unitary matrix, call it Unet, and an

initial state vector, call it Ψ0, so that Unet and Ψ0 describe the state evolution for the

situation captured by the QB net. One has

Ψ = UnetΨ0 , (9)

where information about the root nodes of the QB net is encoded in the initial state

vector Ψ0, and information about the leaf nodes of the QB net is encoded in the final

state vector Ψ.

Next we will define the q-embedding of a probability matrix and of a CB net.

A probability matrix P (y|x) is a rectangular (not necessarily square) matrix

with row index y ∈ Sŷ and column index x ∈ Sx̂ such that P (y|x) ≥ 0 for all

x, y, and
∑

y P (y|x) = 1 for all x. The set of all probability matrices P (y|x) where

x ∈ Sx̂ and y ∈ Sŷ will be denoted by pd(Sŷ|Sx̂) (pd = probability distribution).

A probability matrix is assigned to each node of a CB net. A probability matrix

15

P (y|x) is deterministic if for each column x, there exists a single row y, call it f(x),

such that P (y|x) = δ(f(x), y). Any map f : Sx̂ → Sŷ uniquely specifies (and is

uniquely specified) by the deterministic probability matrix P with matrix elements

P (y|x) = δ(y, f(x)) for all x ∈ Sx̂ and y ∈ Sŷ. We often talk about a map f and its

associated probability matrix P (y|x) as if they were the same thing.

A unitary matrix A(y, x̃|x, ỹ) (with rows labelled by y, x̃ and columns by x, ỹ)

is a q-embedding of probability matrix P (y|x) if

∑

x̃

|A(y, x̃|x, ỹ = 0)|2 = P (y|x) (10)

for all possible values of y and x. We say ỹ is a source index and x̃ is a sink index.

We also refer to x̃ and ỹ collectively as ancilla indices. If a q-embedding satisfies

A(y, x̃|x, ỹ) ∈ Bool for all y, x̃, x, ỹ, we say that it is a deterministic q-embedding.

Examples of the q-embedding of a probability matrix will be given below.

Given a QB net KQ, let

P [(x.)L] =

∣∣∣∣∣∣
∑

(x.)not(L)

A(x.)

∣∣∣∣∣∣

2

. (11)

On the right hand side of Eq.(11), A(x.) is the amplitude of story (x.), not(L) =

ZQ − L, where ZQ is the set of indices of all the nodes of KQ, and L is the set of

indices of all external (leaf) nodes of KQ. In other words, not(L) is the set of internal

(non-leaf) nodes of KQ. We say KQ is a q-embedding of CB net KC if P [(x.)L] defined

by Eq.(11) satisfies

P [(x.)ZC
] =

∑

(x.)L1

P [(x.)L] , (12)

where L1 ⊂ L, and ZC is the set of indices of all nodes of KC . Thus, the probability

distribution associated with all nodes of KC can be obtained from the probability

distribution associated with the external nodes of KQ. Examples of the q-embedding

of a CB net will be given below.

16

Next we will prove that any probability matrix has a q-embedding. Suppose

that we are given a probability matrix P (y|x) where x ∈ Sx̂ and y ∈ Sŷ. Let Nx̂ = |Sx̂|
and Nŷ = |Sŷ|. Let ξ(x) for x ∈ Sx̂ be any orthonormal basis of the complex Nx̂

dimensional vector space. The components of ξ(x) will be denoted by ξ
(x)
x̃ , where

x̃ ∈ Sx̂. If the ξ(x)’s are the standard basis, then ξ
(x)
x̃ = δ(x, x̃). Define matrix A by

A(y, x̃|x, ỹ) =

=





√
P (y|x) ξ

(x)
x̃ if ỹ = 0

obtained by Gram-Schmidt method if ỹ 6= 0
. (13)

To understand the last equation, consider FIG.2. In that figure we have as-

sumed for definiteness that Sx̂ = {0, 1, 2} and Sŷ = {0, 1, 2, 3}. The shaded (ditto,

unshaded) columns have ỹ 6= 0 (ditto, ỹ = 0). It is easy to see that the unshaded

columns are orthonormal because the vectors ξ(x) are orthonormal and
∑

y P (y|x) = 1.

Since the unshaded columns are orthonormal, one can use the Gram-Schmidt method

to fill the shaded columns so that all the columns of A are orthonormal and therefore

A is unitary. The Gram Schmidt method is covered in most Linear Algebra books.

See, for example, the book NobDan88: B. Noble and J.W. Daniels, Applied Linear

Algebra, Third Edition (Prentice Hall, 1988). Note that by virtue of Eq.(13),

∑

x̃

|A(y, x̃|x, ỹ = 0)|2 =

=
∑

x̃

P (y|x)ξ
(x)∗
x̃ ξ

(x)
x̃

= P (y|x) (14)

so that the A defined by Eq.(13) does indeed satisfy Eq.(10).

Note that the matrix A defined by Eq.(13) will have real entries if the ξ(x) basis

is chosen to lie in the real Nx̂ dimensional vector space and the Gram-Schmidt process

is carried out in that same space. Thus, one can always find a q-embedding A for a

probability matrix such that A is not merely unitary, but also orthogonal. However,

17

if A is destined to become a node matrix in a QB net, it may be counterproductive

to constrain A to be real, since this constraint may cause SEO decompositions of A

to be longer.

Note that the matrix A defined by Eq.(13) has dimensions Nx̂Nŷ ×Nx̂Nŷ. It

is sometimes possible to find a smaller q-embedding of an Nŷ×Nx̂ probability matrix

P (y|x). For example, suppose

P (y|x1, x2) = δ(y, x1 ⊕ x2) , (15)

for y, x1, x2 ∈ Bool. Then define

A(y, e|x1, x2) =
(−1)x1e

√
2

δ(y, x1 ⊕ x2) , (16)

for y, e, x1, x2 ∈ Bool. It is easy to check that matrix A is unitary. Furthermore,

∑
e

|A(y, e|x1, x2)|2 = δ(y, x1 ⊕ x2) . (17)

Next we will show that any CB net has a q-embedding. So far we’ve shown how

to construct a q-embedding for any probability matrix. Remember that each node of

a CB net KC has a probability matrix assigned to it. The main step in constructing

a q-embedding of KC is to replace each node matrix of KC by a q-embedding of it.

Before describing our construction method, we need some definitions. We say

a node m̂ is a marginalizer node if it has a single input arrow and a single output

arrow. Furthermore, the parent node of m̂, call it x̂, has states x = (x1, x2, . . . , xn),

where xi ∈ Sx̂i
for each i ∈ Z1,n. Furthermore, for some particular integer i0 ∈ Z1,n,

the set of possible states of m̂ is Sm̂ = Sx̂i0
, and the node matrix of m̂ is P [m̂ =

m|x̂ = (x1, x2, . . . , xn)] = δ(m, xi0).

Let KC be a CB net for which we want to obtain a q-embedding. Our con-

struction has two steps:

(Step 1) Add marginalizer nodes.

18

More specifically, replace KC by a modified CB net KC
mod obtained as follows.

For each node x̂ of KC , add a marginalizer node between x̂ and every child of x̂. If

x̂ has no children, add a child to it.

As an example of this step, consider the net KC (“two body scattering net”)

defined by FIG.3. FIG.3 consists of two parts: a graph, and a table giving the

probability matrices associated with each node of the graph.

Applying Step 1 to KC defined by FIG.3 yields KC
mod defined by FIG.4. Note

that in FIG.4, black circles denote all the marginalizer nodes added in Step 1, whereas

white circles denote the original nodes of KC .

(Step 2) Replace node probability matrices by their q-embeddings. Add

ancilla nodes.

More specifically, replace KC
mod by a QB net KQ obtained as follows. For each

node of KC
mod, except for the marginalizer nodes that were added in the previous

step, replace its node matrix by a new node matrix which is a q-embedding of the

original node matrix. Add a new node for each ancilla index of each new node matrix.

These new nodes will be called ancilla nodes (of either the source or sink kind) because

they correspond to ancilla indices.

Applying Step 2 to net KC
mod for two body scattering yields KQ defined by

the graph shown in FIG.5 and the table of node amplitudes shown in FIG.6. Note

that in FIG.5, black circles denote all the marginalizer and ancilla nodes added in

Steps 1 and 2, whereas white circles denote the original nodes of KC .

KQ looks much more complicated than KC , but it really isn’t, since most of

its node matrices are delta functions which quickly disappear when summing over

node states.

According to the table of FIG.6, the probability amplitude for the external

(aka leaf) nodes is given by the equation of FIG.7, where we have summed over

all internal (non-leaf) nodes. The equation of FIG.7 shows that the net KQ that

19

we constructed from the net KC by following Steps 1 and 2 satisfies the definition

Eq.(12) that we gave earlier for a q-embedding of KC . The probability distribution

of the states of the external nodes of the QB net KQ contains all the probabilistic

information of the original CB net KC . Hurray!

The q-embedding of a CB net, as defined by Eq.(12), is not unique. For

example, we could have defined the graph of FIG.5 without the nodes â3 and b̂3. We

chose to include such nodes for pedagogical reasons.

As another example of q-embedding a CB net, consider the CB net (“lung-

disease-diagnosis net”) defined by FIG.8. The figure includes the net’s graph and a

table of its node probabilities. After applying Steps 1 and 2 to the CB net of FIG.8,

one obtains the QB net defined by the graph of FIG.9 and the table of FIG.10.

Next we will first present a CB net, call it KC , that describes voting. Then

we will find a QB net KQ that is a q-embedding of KC . In certain cases, the target

states that we wish to detect have probabilities that are too small to be measurable

by running KQ on a quantum computer. However, we will show that sometimes one

can construct a new QB net, call it KQ′, that magnifies to measurable values the

target probabilities that were unmeasurable using KQ alone. We will refer to KQ′

as Grover’s Microscope for KQ, because KQ′ is closely related to Grover’s algorithm,

and it magnifies some of the probabilities found with KQ.

Suppose y ∈ Bool and ~x = (x0, x1, . . . , xNB−1) ∈ BoolNB . Let f : BoolNB →
Bool.

We will say that f is AND-like if f(~x) = θ(~x = ~xtarg) for some target vector

~xtarg ∈ BoolNB . An AND-like f maps all ~x into zero except for ~xtarg which it maps

into one. Thus, |f−1(1)| = 1. An example of an AND-like f is the multiple AND gate

f(~x) = x0∧x1∧. . .∧xNB−1, which can also be expressed as f(~x) = θ[~x = (1, 1, . . . , 1)].

We will say that f is OR-like if f(~x) = θ(~x 6= ~xtarg) for some target vector

~xtarg ∈ BoolNB . An OR-like f maps all ~x into one except for ~xtarg which it maps

into zero. Thus, |f−1(0)| = 1. An example of an OR-like f is the multiple OR gate

20

f(~x) = x0∨x1∨. . .∨xNB−1, which can also be expressed as f(~x) = θ[~x 6= (0, 0, . . . , 0)].

We will say that f has a single target if it is either AND-like or OR-like. If

f has more than one target (i.e., if |f−1(0)| and |f−1(1)| are both greater than one),

then we will say that f has multiple targets.

Suppose y ∈ Bool and ~x = (x0, x1, . . . , xNB−1) ∈ BoolNB . Consider the CB

net (“voting net”) defined by FIG.11.

Henceforth, we will abbreviate P (y = 0|~x) = pi and P (y = 1|~x) = qi, where

i = dec(~x) ∈ Z0,NS−1. Hence pi +qi = 1 for all i ∈ Z0,NS−1. In general, the probability

matrix P (y|~x) has 2NB free parameters (namely, pi for all i ∈ Z0,NS−1). This number of

parameters is forbiddingly large for large NB. To ease the task of specifying P (y|~x)

, it is common to impose additional constraints on P (y|~x). An interesting special

type of P (y|~x) is deterministic pd(Bool|BoolNB) matrices; that is, those that can be

expressed in the form

P (y|~x) = δ(y, f(~x)) , (18)

where f : BoolNB → Bool. In this case, the voting net can be used to pose the

satisfiability problem (SAT): given y = 0, find the most likely ~x ∈ BoolNB ; in other

words, find those ~x for which f(~x) = 0. If f is OR-like then all pi equal zero except

for one pi which equals one. For example, for NB = 2, if f is an OR gate, then

P (y|~x)OR =




1 0 0 0

0 1 1 1


 , (19)

where the row indices are y = 0, 1 and the column indices are ~x = 00, 01, 10, 11 in that

order. A slightly more general type of P (y|~x) is quasi-deterministic pd(Bool|BoolNB)

matrices; that is, those that can be expressed in the form

P (y|~x) =
∑

~t

δ(y, f(~t))P (t0|x0)P (t1|x1) . . . P (tNB−1|xNB−1) , (20)

where f : BoolNB → Bool and we sum over all ~t = (t0, t1, . . . , tNB−1) ∈ BoolNB .

21

When f(~t) = t0 ∨ t1 ∨ . . .∨ tNB−1, P (y|~x) is called a noisy-OR. TucV2 discusses how

to q-embed deterministic and quasi-deterministic pd(Bool|BoolNB) matrices, and how

to express their q-embeddings as a SEO .

A q-embedding for the CB net defined by FIG.11 is given by the QB net

defined by FIG.12.

According to table 122 of FIG.12, the probability amplitude for the external

(leaf) nodes is given by equation 123 of FIG.12.

To fully specify the QB net for voting, we need to extend A(~x2|~x1 = 0) and

A(~x3, y2|~x2, y1 = 0) into unitary matrices by adding columns to them. This can always

be accomplished by applying the Gram-Schmidt algorithm. But sometimes one can

guess a matrix extension, and this makes application of the Gram-Schmidt method

unnecessary. If P (~x) is uniform (i.e., P (~x) = 1/NS for all ~x, which means there is

no a priori information about ~x), then A(~x2|~x1 = 0) = 1/
√

NS. In this case, we can

extend A(~x2|~x1 = 0) into the NB bit Hadamard matrix HNB
:

[A(~x2|~x1)] = HNB
/
√

NS . (21)

(This works because all entries of the first column of HNB
are equal to 1.) As to

extending A(~x3, y2|~x2, y1 = 0), this can be done as follows. Define

∆p = diag(
√

p0,
√

p1, . . . ,
√

pNS−1) , (22)

and

∆q = diag(
√

q0,
√

q1, . . . ,
√

qNS−1) . (23)

A possible way of extending A(~x3, y2|~x2, y1 = 0) into a unitary matrix is

[A(~x3, y2|~x2, y1)] =




∆p −∆q

∆q ∆p


 . (24)

22

Unitary matrices of this kind are called D-matrices in QbtrPat. QbtrPat shows

how to decompose any D-matrix into a SEO.

Next we will discuss Grover’s Microscope for the voting QB net defined by

FIG.12. For simplicity, we will assume that P (~x) is uniform.

Let ~κ = (κ0, κ1, . . . , κNB−1) label NB bits and let τ label another bit. Assume

that τ and all the κi are distinct. Define

φp = (
√

p0,
√

p1, . . . ,
√

pNS−1)
T , (25)

φq = (
√

q0,
√

q1, . . . ,
√

qNS−1)
T , (26)

and

|Ψ〉 = Ψ =
1√
NS




φp

φq


 . (27)

Since pi + qi = 1 for all i, φT
p φp + φT

q φq = NS. According to equation 123 of FIG.12,

when P (~x) is uniform, the voting QB net fully specifies a unitary matrix Unet such

that

|Ψ〉 = Unet|0〉~κ|0〉τ . (28)

(The last equation is an example of Eq.(9).)

Define orthonormal vectors e0 and e1 by

e0 =




φp/|φp|
0


 , e1 =




0

φq/|φq|


 . (29)

If P (y|~x) is deterministic with OR-like f , then all components of e0 are zero except

for the one at the target state jtarg.

Ψ can be expressed in terms of e0, e1 as

23

Ψ =
1√
NS

(|φp|e0 + |φq|e1) . (30)

It is convenient to define a vector Ψ⊥ orthogonal to Ψ:

Ψ⊥ =
1√
NS

(|φq|e0 − |φp|e1) . (31)

If P (y|~x) is deterministic with OR-like f , then |φp| = 1 and |φq| =
√

NS − 1 so, for

large NS, Ψ ≈ e1 and Ψ⊥ ≈ e0. For an arbitrary angle α, let

Ψ′
⊥ =

1√
NS

[
(cα

2
|φq|+ sα

2
|φp|)e0 + (sα

2
|φq| − cα

2
|φp|)e1

]
, (32)

where sA = sin A and cA = cos A for any angle A. Note that the angle between Ψ′
⊥

and Ψ⊥ is α/2. Also, the angle between e1 and Ψ is θ/2.

FIG.13 portrays various vectors that arise in explaining Grover’s Microscope.

Note that Ψ′
⊥ = e0 when α = θ.

Since we plan to stay within the two dimensional vector space with orthonor-

mal basis e0, e1, it is convenient to switch matrix representations. Within span(e0, e1),

e0, e1 can be represented more simply by:

e0 =




1

0


 , e1 =




0

1


 . (33)

If e0, e1 are represented in this way, then

Ψ =
1√
NS



|φp|
|φq|


 , (34)

Ψ⊥ =
1√
NS




|φq|
−|φp|


 , (35)

and

Ψ′
⊥ = WΨ , (36)

24

where

W =




cα
2
−sα

2

sα
2

cα
2







0 1

−1 0


 . (37)

The matrix




0 1

−1 0


 is a clockwise rotation by π/2 in space span(e0, e1). Thus, W

equals a clockwise rotation by π/2 followed by a counter-clockwise rotation by α/2.

Define the following reflection operators

R0 = 1− 2Π|0〉~κΠ|0〉τ , (38)

RΨ = UnetR0U
†
net , (39)

RΨ′⊥ = WRΨW † . (40)

It follows that

−RΨRΨ′⊥ = cαΨΨT − sαΨΨT
⊥ + sαΨ⊥ΨT + cαΨ⊥ΨT

⊥ . (41)

Thus, −RΨRΨ′⊥ rotates vectors in span(e0, e1), clockwise by an angle α.

Grover’s Microscope can be summarized by the following equation

(−RΨRΨ′⊥)rΨ ≈ e0 , (42)

for some integer r to be determined, where “≈” means approximation at large NS.

What this means is that our system starts in state Ψ and is rotated consecutively

r times, each time by a small angle α, until it arrives at the state e0. If P (y|~x) is

deterministic with OR-like f , then measuring state e0 yields the target state jtarg.

The optimum number r of iterations is

25

rα ≈ π

2
(1 + 2k) (43)

for some integer k. Note that cos(θ/2) = 〈Ψ|e1〉 = |φq|/
√

NS. Hence, in general, θ

depends on |φp| (or on |φq| =
√

NS − |φp|2). If P (y|~x) is deterministic with OR-like

f , then |φp| = 1 and |φq| =
√

NS − 1. In this case, it is convenient to choose α = θ,

so that Ψ′
⊥ = e0. Then the optimum number r of iterations for Grover’s original

algorithm and for Grover’s Microscope are equal. If we don’t know ahead of time the

value of |φp|, then setting θ = α will make both r and α depend on the unknown |φp|,
although the product rα will still be independent of it.

Let

UGscope =




0 1

−1 0




= −e1e
T
0 + e0e

T
1

= −ΨΨT
⊥ + Ψ⊥ΨT . (44)

Note that

UGscopeΨ = Ψ⊥ . (45)

From the point of view of quantum compiling, Grover’s Microscope approximates

the π/2 rotation UGscope by the r-fold product of −RΨRΨ′⊥ , where we assume that

−RΨRΨ′⊥ can be shown to have a SEO of low (polynomial in NB) complexity. (If

such a low complexity SEO cannot be found, then it is pointless to divide UGscope into

r iterations of −RΨRΨ′⊥ , and we might be better off compiling UGscope all at once.)

(B)Computer Implementation of Theory

In Section (A), we described a mathematical algorithm for q-embedding any CB net

within a QB net. Next we describe a particular implementation of this algorithm, a

computer program called Q-Embedder that can be run on a classical computer.

26

To understand the input and output data of Q-Embedder, one must first under-

stand the convention Q-Embedder uses for specifying CB and QB nets. Q-Embedder

uses two text files to specify a QB net. An example is shown in FIG.14. In this

figure, boxes 140 and 145 each represents a text file.

From text file 140 we learn that the QB net has 3 nodes called A, B and X.

We also learn the possible states of each node. For example, node A has two possible

states, a1 and a2. The hash symbol in line 141 indicates that a new node will follow.

Line 142 names the node A being considered. Lines 143 list the two possible states,

a1, a2, of A.

From text file 145, we learn that nodes A,B,X are connected by two arrows:

(1) from A to X, (2) from B to X. We also learn the node matrix for each of the

nodes. For example, we learn that node A is a root node, and the amplitudes of its

two states a1 and a2 are, respectively, 0.707 + 0i and 0 + 0.707i. Node X has four

parent states: (B, A) = (b1, a1), (b2, a1), (b1, a2) and (b2, a2). For the parent state

(B,A) = (b1, a1), the amplitudes of the two states x1 and x2 of X are, respectively,

1 + 0i and 0 + 0i. The hash symbol in line 146 indicates that a new parent state

will follow. Line 147 names the node X being considered. Lines 148 give the parent

state (B,A) = (b1, a1). Lines 149 give the amplitude of the states x1, x2.

There are many equivalent ways of specifying a QB net. In earlier examples, we

specified a QB net by giving a graph (diagram) and a table specifying the amplitudes

for each node. On the other hand, Q-Embedder specifies QB nets by means of two

text files exemplified by FIG.14.

To specify a CB net instead of a QB net, Q-Embedder also uses two text files,

almost identical to those exemplified by FIG.14. The only difference is that wherever

QB net files list two real numbers separated by white space to represent a complex

number (a node amplitude), CB net files list a single real number, from the interval

[0,1], to represent a probability.

Now that we understand how Q-Embedder specifies CB nets and QB nets, it

27

is easy to describe the input and output data for Q-Embedder. Q-Embedder takes

as input two text files that specify a CB net KC , and it returns as output two text

files that specify a QB net KQ that is a q-embedding of KC . For example, if the two

input text files specify the CB net defined by FIG.3, then the two output text files

will specify that QB net defined by FIG.5 and FIG.6.

We will not present source code for Q-Embedder in this patent. Those skilled

in the art of programming will find it a straightforward exercise to write a computer

program like Q-Embedder that performs Steps 1 and 2. These steps were carefully

described and illustrated with two detailed examples, two body scattering and lung

disease diagnosis.

Next we will discuss how to combine Q-Embedder, Qubiter, and a quantum

computer.

QbtrPat proposes a computer program for translating a QB net into an equiv-

alent SEO. QbtrPat gives source code for a computer program called Qubiter-1.0

that can accomplish such translations partially, for two node QB nets. Then QbtrPat

gives careful instructions on how to augment Qubiter-1.0 so that it can translate any

QB net. Assume henceforth a computer program called Qubiter that can translate

any QB net into a SEO.

Q-Embedder can be used in tandem with Qubiter. In such a configuration,

Q-Embedder takes as input 2 text that specify a CB net, and it returns as output 2

text files that specify a QB net. Then Qubiter takes as input the 2 output files of

Q-Embedder, and it returns as output an equivalent SEO.

Note that it may suffice to find a SEO that is only approximately (within

a certain precision) equivalent instead of exactly equivalent to the QB net. This

may be true if, for example, the probabilities associated with the CB net that was

q-embedded were not specified too precisely to begin with.

A classical computer running Q-Embedder and Qubiter in tandem can feed

the SEO produced by Qubiter to a quantum computer.

28

FIG.15 is a block diagram of a classical computer feeding data to a quantum

computer. Box 150 represents a classical computer. It comprises sub-boxes 151, 152,

153. Box 151 represents input devices, such as a mouse or a keyboard. Box 152

represents the CPU, internal and external memory units. Box 152 does calculations

and stores information. Box 153 represents output devices, such as a printer or a

display screen. The graph (e.g., FIG.3) of a CB net, or the graph (e.g., FIG.5) of a QB

net, can be rendered on the display screen. Box 155 represents a quantum computer,

comprising an array of quantum bits and some hardware for manipulating the state

of those bits. For more information about the organization of a present day classical

computer, see CPP: J. Adams, S. Leestma, L. Nyhoff, “C++, an Introduction to

Computing”,(Prentice Hall, 1995) pages 19-20.

Next we describe how to calculate probabilities with a quantum computer.

Consider the example of the CB net KC given by FIG.3 and its q-embedding, the

QB net KQ given by FIG.5 and FIG.6. From the equation of FIG.7, it is clear that

by running KQ on a quantum computer, we can calculate any conditional probability

that one would want to calculate for KC . For example, suppose we wanted to calculate

Pâ,d̂|x̂. Run KQ on the quantum computer several times, each time measuring nodes

â5, d̂3 and x̂5d and not measuring all other external nodes. The resulting measure-

ments will be distributed according to the probability distribution Pâ,d̂,x̂. Nature will

automatically take the magnitude squared of the amplitude A(a5, b5, c3, d3, x5c, x5d)

and sum the result over the states of the un-measured external nodes. The laws of

quantum mechanics guarantee it. Proceed in the same way to calculate Px̂. Run KQ

on the quantum computer several times, each time measuring node x̂5d and not mea-

suring all other external nodes. Finally divide Pâ,d̂,x̂ by Px̂ on a classical (or quantum)

computer. This procedure works if we assign an integer number of qubits to each ex-

ternal node of KQ, and if different external nodes are assigned different qubits. This

way, when we say that we measured or did not measure an external node, we mean

that we measured or did not measure the qubits assigned to that node. To implement

29

this idea, it is convenient to extend the set of possible states of each node of KC so

that the cardinality of the extended set equals a power of two. For example, for the

CB net of FIG.3, let Nâ = |Sâ|. Then let

N â = min{2n : n ∈ Z0,∞, Nâ ≤ 2n} . (46)

We extend Sâ to a larger set S â which contains Sâ and has |S â| = N â. We also define

P (a) = 0 for a ∈ S â − Sâ. In an analogous way, we extend Sb̂, Sx̂, Sĉ and Sd̂ so that

each has a cardinality which is a power of two. We also extend the functions P (b),

P (x|a, b), P (c|x) and P (d|x) so that they take the same values on the old elements

of the domain and vanish on the new ones.

Suppose samples a1, a2, . . . aν belong to a finite set Sâ, and suppose that they

are distributed according to a probability distribution Pâ. What number ν of samples

ai is necessary to estimate Pâ within a given precision? This question is directly

relevant to our method for estimating probabilities by running a QB net on a quantum

computer. We will not give a detailed answer to this question here. For an answer, the

reader can consult any book on the mathematical theory of Statistics. An imprecise

rule of thumb is that if the support of Pâ has ν0 elements, then ν should be at least

as large as ν0; i.e., one needs at least “one data point per bin” to estimate Pâ with

any decent accuracy.

We’ve explained how to estimate a conditional probability for a CB net by

running a QB net ν times on a quantum computer. If we wanted to find P (y|x0, x1)

for the voting CB net, then the number of runs ν required to estimate P (y|x0, x1)

with moderate accuracy would not be too onerous, because the domain of P (y|x0, x1)

is Bool3, which contains only 8 points. But what if we wanted to estimate P (y|~x)?

For large NB, the domain of P (y|~x) is very large (2NB+1 points). If the support of

P (y|~x) occupies a large fraction of this domain, then the number of runs ν required

to estimate P (y|~x) with moderate accuracy is forbiddingly large. However, there are

some cases in which “Grover’s Microscope” can come to the rescue, by allowing us to

30

amplify certain salient features of P (y|~x) so that they become measurable in only a

few runs.

So far, we have described some exemplary preferred embodiments of this in-

vention. Those skilled in the art will be able to come up with many modifications to

the given embodiments without departing from the present invention. Thus, the in-

ventor wishes that the scope of this invention be determined by the appended claims

and their legal equivalents, rather than by the given embodiments.

31

I claim:

1. A method of operating a classical computer having display, storage and calcu-

lation means, to calculate a q-net data-set based on a c-net data-set with the

purpose of inducing a quantum computer to calculate a desired probability that

depends on said c-net data-set, said method comprising the steps of:

displaying on said display means a c-graph comprising a plurality of N c-nodes,

and a plurality of directed c-lines connecting certain pairs of said c-nodes,

storing said c-net data-set in said storage means, wherein said c-net data-set

comprises:

(a) c-graph information comprising a c-node label for each of said N c-

nodes, and also comprising, for each said directed c-line, said c-node

label for the source c-node and for the destination c-node of the di-

rected c-line,

(b) c-state information comprising, for each j ∈ {1, 2, · · ·N}, a finite set

Sj containing labels for the states that the j’th c-node x̂j may assume,

and

(c) c-probability information comprising, for each j ∈ {1, 2, · · ·N}, a rep-

resentation of a non-negative real number Pj[xj|xk1 , xk2 , · · · , xk|Γj |
] for

each vector (xj, (x.)Γj
) = (xj, xk1 , xk2 , · · · , xk|Γj |

) such that xj ∈ Sj,

xk1 ∈ Sk1 , xk2 ∈ Sk2 , · · ·, and xk|Γj |
∈ Sk|Γj |

, wherein (x̂k1 , x̂k2 , · · · , x̂k|Γj |
)

are the |Γj| c-nodes connected to x̂j by directed c-lines entering x̂j,

wherein said |Γj| is an integer greater or equal to zero,

composing said q-net data-set with said calculation means and using said c-net

data-set, wherein said q-net data-set comprises

(a′) q-graph information comprising a q-node label for each q-node of a

plurality of N ′ q-nodes, and also comprising a plurality of directed

q-lines, wherein a directed q-line comprises an ordered pair of said

32

q-node labels, wherein one member of the label pair labels the source

q-node and the other member labels the destination q-node of the

directed q-line,

(b′) q-state information comprising, for each j ∈ {1, 2, · · ·N ′}, a finite set

S ′j containing labels for the states that the j’th q-node ŷj may assume,

and

(c′) q-amplitude information comprising, for each j ∈ {1, 2, · · ·N ′}, a rep-

resentation of a complex number Aj[yj|yk1 , yk2 , · · · , yk|Γ′
j
|] for each vec-

tor (yj, (y.)Γ′j) = (yj, yk1 , yk2 , · · · , yk|Γ′
j
|) such that yj ∈ S ′j, yk1 ∈ S ′k1

,

yk2 ∈ S ′k2
, · · ·, and yk|Γ′

j
| ∈ S ′k|Γ′

j
|
, wherein (ŷk1 , ŷk2 , · · · , ŷk|Γ′

j
|) are the

|Γ′j| nodes connected to ŷj by directed lines entering ŷj, wherein said

|Γ′j| is an integer greater or equal to zero,

wherein if

P (x.) =
N∏

j=1

Pj[xj|(x.)Γj
]/(

∑

(x.)

numerator),

and

A(y.) =
N ′∏

j=1

Aj[yj|(y.)Γ′j]/(
∑

(y.)

|numerator|2),

and L is the set of all j such that ŷj is a leaf node of said q-net data-set, and

not(L) = {1, 2, . . . N ′} − L, and

AL[(y.)L] =
∑

(y.)not(L)

A(y.),

then, for all x1 ∈ S1, x2 ∈ S2, . . ., and xN ∈ SN , P (x.) is a sum of some numbers

from the set

{|AL[(y.)L]|2 : for all possible values of (y.)L}.

2. The method of claim 1, comprising the additional step of:

calculating with said classical computer, a data-set that specifies a unitary

matrix Unet, wherein Unet describes the state evolution for the situation

captured by said q-net data-set.

33

3. The method of claim 2, comprising the additional steps of:

calculating with said classical computer, a data-set that specifies a unitary

matrix T , wherein if Ψ = Unet|0〉, and if Ψ′ = TΨ, and if all the components

Ψj of Ψ have an absolute value that is small compared to one, then some

component Ψ′
j0

of Ψ′ has an absolute value that is close to one.

calculating with said classical computer, a sequence of operations, wherein said

sequence of operations and said T both would, if applied to an array of

qubits, produce equivalent transformations of the array.

4. The method of claim 3, wherein said sequence of operations comprises elemen-

tary operations on qubits.

5. The method of claim 3, wherein said sequence of operations is a sequence of

elementary operations on qubits.

6. The method of claim 2, comprising the additional step of:

calculating with said classical computer, a sequence of operations, wherein said

sequence of operations and said Unet both would, if applied to an array of

qubits, produce equivalent transformations of the array.

7. The method of claim 6, wherein said sequence of operations comprises elemen-

tary operations on qubits.

8. The method of claim 6, wherein said sequence of operations is a sequence of

elementary operations on qubits.

9. The method of claim 6, further utilizing a quantum computer, comprising the

additional step of:

manipulating said quantum computer largely according to said sequence of

operations.

34

10. A method of operating a classical computer to calculate a q-net data-set based

on a c-net data-set with the purpose of inducing a quantum computer to cal-

culate a desired probability that depends on said c-net data-set, said method

comprising the steps of:

storing said c-net data-set in said classical computer, wherein said c-net data-

set comprises:

(a) c-graph information comprising a c-node label for each c-node of a

plurality of N c-nodes, and also comprising a plurality of directed c-

lines, wherein a directed c-line comprises an ordered pair of said c-node

labels, wherein one member of the label pair labels the source c-node

and the other member labels the destination c-node of the directed

c-line,

(b) c-state information comprising, for each j ∈ {1, 2, · · ·N}, a finite set

Sj containing labels for the states that the j’th c-node x̂j may assume,

and

(c) c-probability information comprising, for each j ∈ {1, 2, · · ·N}, a rep-

resentation of a non-negative real number Pj[xj|xk1 , xk2 , · · · , xk|Γj |
] for

each vector (xj, (x.)Γj
) = (xj, xk1 , xk2 , · · · , xk|Γj |

) such that xj ∈ Sj,

xk1 ∈ Sk1 , xk2 ∈ Sk2 , · · ·, and xk|Γj |
∈ Sk|Γj |

, wherein (x̂k1 , x̂k2 , · · · , x̂k|Γj |
)

are the |Γj| c-nodes connected to x̂j by directed c-lines entering x̂j,

wherein said |Γj| is an integer greater or equal to zero,

composing said q-net data-set with said classical computer and using said c-net

data-set, wherein said q-net data-set comprises

(a′) q-graph information comprising a q-node label for each q-node of a

plurality of N ′ q-nodes, and also comprising a plurality of directed

q-lines, wherein a directed q-line comprises an ordered pair of said

q-node labels, wherein one member of the label pair labels the source

35

q-node and the other member labels the destination q-node of the

directed q-line,

(b′) q-state information comprising, for each j ∈ {1, 2, · · ·N ′}, a finite set

S ′j containing labels for the states that the j’th q-node ŷj may assume,

and

(c′) q-amplitude information comprising, for each j ∈ {1, 2, · · ·N ′}, a rep-

resentation of a complex number Aj[yj|yk1 , yk2 , · · · , yk|Γ′
j
|] for each vec-

tor (yj, (y.)Γ′j) = (yj, yk1 , yk2 , · · · , yk|Γ′
j
|) such that yj ∈ S ′j, yk1 ∈ S ′k1

,

yk2 ∈ S ′k2
, · · ·, and yk|Γ′

j
| ∈ S ′k|Γ′

j
|
, wherein (ŷk1 , ŷk2 , · · · , ŷk|Γ′

j
|) are the

|Γ′j| nodes connected to ŷj by directed lines entering ŷj, wherein said

|Γ′j| is an integer greater or equal to zero,

wherein if

P (x.) =
N∏

j=1

Pj[xj|(x.)Γj
]/(

∑

(x.)

numerator),

and

A(y.) =
N ′∏

j=1

Aj[yj|(y.)Γ′j]/(
∑

(y.)

|numerator|2),

and L is the set of all j such that ŷj is a leaf node of said q-net data-set, and

not(L) = {1, 2, . . . N ′} − L, and

AL[(y.)L] =
∑

(y.)not(L)

A(y.),

then, for all x1 ∈ S1, x2 ∈ S2, . . ., and xN ∈ SN , P (x.) is a sum of some numbers

from the set

{|AL[(y.)L]|2 : for all possible values of (y.)L}.

11. The method of claim 10, wherein said classical computer has a display screen,

comprising the additional step of:

displaying on said display screen a diagram of said c-graph information.

36

12. The method of claim 10, comprising the additional step of:

calculating with said classical computer, a data-set that specifies a unitary

matrix Unet, wherein Unet describes the state evolution for the situation

captured by said q-net data-set.

13. The method of claim 12, comprising the additional steps of:

calculating with said classical computer, a data-set that specifies a unitary

matrix T , wherein if Ψ = Unet|0〉, and if Ψ′ = TΨ, and if all the components

Ψj of Ψ have an absolute value that is small compared to one, then some

component Ψ′
j0

of Ψ′ has an absolute value that is close to one.

calculating with said classical computer, a sequence of operations, wherein said

sequence of operations and said T both would, if applied to an array of

qubits, produce equivalent transformations of the array.

14. The method of claim 13, wherein said sequence of operations comprises elemen-

tary operations on qubits.

15. The method of claim 13, wherein said sequence of operations is a sequence of

elementary operations on qubits.

16. The method of claim 12, comprising the additional step of:

calculating with said classical computer, a sequence of operations, wherein said

sequence of operations and said Unet both would, if applied to an array of

qubits, produce equivalent transformations of the array.

17. The method of claim 16, wherein said sequence of operations comprises elemen-

tary operations on qubits.

18. The method of claim 16, wherein said sequence of operations is a sequence of

elementary operations on qubits.

37

19. The method of claim 16, further utilizing a quantum computer, comprising the

additional step of:

manipulating said quantum computer largely according to said sequence of

operations.

20. A method of operating a classical computer to calculate a q-net data-set based

on a c-net data-set with the purpose of inducing a quantum computer to cal-

culate a desired probability that depends on said c-net data-set, said method

comprising the steps of:

storing said c-net data-set in said classical computer, wherein said c-net data-

set comprises:

(a) c-graph information comprising a c-node label for each c-node of a

plurality of N c-nodes, and for each j ∈ {1, 2, · · · , N}, a subset Γj of

{1, 2, · · · , N}, and

(b) c-state information comprising, for each j ∈ {1, 2, · · ·N}, a finite set

Sj containing labels for the states that the j’th c-node x̂j may assume,

and

(c) c-probability information comprising, for each j ∈ {1, 2, · · ·N}, a rep-

resentation of a non-negative real number Pj[xj|(x.)Γj
] for each vec-

tor (xj, (x.)Γj
) = (xj, xk1 , xk2 , · · · , xk|Γj |

) such that xj ∈ Sj, xk1 ∈ Sk1 ,

xk2 ∈ Sk2 , · · ·, and xk|Γj |
∈ Sk|Γj |

, wherein said |Γj| is an integer greater

or equal to zero,

composing said q-net data-set with said classical computer and using said c-net

data-set, wherein said q-net data-set comprises

(a′) q-graph information comprising a q-node label for each q-node of a

plurality of N ′ q-nodes, and for each j ∈ {1, 2, · · · , N ′}, a subset Γ′j of

{1, 2, · · · , N ′}, and

38

(b′) q-state information comprising, for each j ∈ {1, 2, · · ·N ′}, a finite set

S ′j containing labels for the states that the j’th q-node ŷj may assume,

and

(c′) q-amplitude information comprising, for each j ∈ {1, 2, · · ·N ′}, a rep-

resentation of a complex number Aj[yj|(y.)Γ′j]for each vector (yj, (y.)Γ′j) =

(yj, yk1 , yk2 , · · · , yk|Γ′
j
|) such that yj ∈ S ′j, yk1 ∈ S ′k1

, yk2 ∈ S ′k2
, · · ·, and

yk|Γ′
j
| ∈ S ′k|Γ′

j
|
, wherein said |Γ′j| is an integer greater or equal to zero,

wherein if

P (x.) =
N∏

j=1

Pj[xj|(x.)Γj
]/(

∑

(x.)

numerator),

and

A(y.) =
N ′∏

j=1

Aj[yj|(y.)Γ′j]/(
∑

(y.)

|numerator|2),

and not(L) = ∪N ′
j=1Γ

′
j, and L = {1, 2, . . . N ′} − not(L), and

AL[(y.)L] =
∑

(y.)not(L)

A(y.),

then, for all x1 ∈ S1, x2 ∈ S2, . . ., and xN ∈ SN , P (x.) is a sum of some numbers

from the set

{|AL[(y.)L]|2 : for all possible values of (y.)L}.

21. The method of claim 20, comprising the additional step of:

calculating with said classical computer, a data-set that specifies a unitary

matrix Unet, wherein Unet describes the state evolution for the situation

captured by said q-net data-set.

22. The method of claim 21, comprising the additional steps of:

calculating with said classical computer, a data-set that specifies a unitary

matrix T , wherein if Ψ = Unet|0〉, and if Ψ′ = TΨ, and if all the components

39

Ψj of Ψ have an absolute value that is small compared to one, then some

component Ψ′
j0

of Ψ′ has an absolute value that is close to one.

calculating with said classical computer, a sequence of operations, wherein said

sequence of operations and said T both would, if applied to an array of

qubits, produce equivalent transformations of the array.

23. The method of claim 22, wherein said sequence of operations comprises elemen-

tary operations on qubits.

24. The method of claim 22, wherein said sequence of operations is a sequence of

elementary operations on qubits.

25. The method of claim 21, comprising the additional step of:

calculating with said classical computer, a sequence of operations, wherein said

sequence of operations and said Unet both would, if applied to an array of

qubits, produce equivalent transformations of the array.

26. The method of claim 25, wherein said sequence of operations comprises elemen-

tary operations on qubits.

27. The method of claim 25, wherein said sequence of operations is a sequence of

elementary operations on qubits.

28. The method of claim 25, further utilizing a quantum computer, comprising the

additional step of:

manipulating said quantum computer largely according to said sequence of

operations.

40

ABSTRACT

The invention comprises a classical computer that runs a special computer program.

The program takes as input an initial data-set that comprises probabilistic infor-

mation and returns as output a sequence of elementary operations (SEO). The ini-

tial data-set helps determine a classical Bayesian (CB) net. A program called “Q-

Embedder” embeds the CB net within a quantum Bayesian (QB) net. A program

called “Qubiter” (a quantum compiler) then translates the QB net into an equivalent

SEO. The SEO outputted by the classical computer can be used to manipulate an

array of qubits in a quantum computer. Application of the SEO to the array, followed

by a measurement of the array, yields the value of certain conditional probabilities

that we wish to know. The main goal of the invention is to provide a method for

performing classical Bayesian net calculations on a quantum computer. Such calcu-

lations can be done on a classical computer; the hope is that they can be done much

faster on a quantum computer.

41

